SAULT COLLEGE of Applied Arts and Technology Sault Ste. Marie

COURSE OUTLINE

revised _fsf-

MTY 2A - MCH 111

The course will cover chapters 9-13 inclusive in Introduction to Mechanics by Levinson.

You will be tested on chapter 9 and 10 two weeks after completion of these chapters.

You will be tested on chapters 11 and 12 two weeks after completion of these chapters.

The final test will be administered after completion of chapter 13.

The marking system will be A,B,C and I and tests will be graded on logical solution, layout, sketches and tidiness.

WJ/mb 1983/01/12

MECHANICAL TECHNOLOGY

APPLIED MECHANICS

MCH 111-4

TEXT:

Introduction to Mechanics - Levinson - (Prentice-Hall)

REFERENCES:

Applied Mechanics - Brown - (Prentice-Hall) Applied Engineering Mechanics - Jensen & Chenoweth - (McGraw-Hill)

APPLIED MECHANICS

MCH.111-4

pic Number	Periods	Topic Description Refe	rence
>			
	10	Motion	jf
		Speed, velocity and acceleration	!
		Distance and displacement	<-
		Uniformly accelerated bodies	•; i
		Falling bodies	;
		Projectiles	;
	8	Force & Motion	!'
		Newton's Second Law	tj :'
		Accelerating forces - horizontal & vertical motion	;
	8	Rotational Motion	بة.
		Angular displacement (radians)	^;
		Angular velocity and acceleration	;
		Relationship between linear and angular motion	j; ;
		Radius of gyration	,⊥
		Kinetic energy of rotation	;•
		Torque	:
		Angular momentum	!
	10	Work, Energy and Power	!;
		Definitions, units, measurement	:
		Concept of work	I
		Forms of energy - potential and kinetic	£
		Conservation of energy	4
	6	Impulse and Momentum -]\
		Linear impulse	
		Linear momentum	•
		Conservation of momentum Impact	;
	Course base	ed on two periods of theory and two periods of lab.	

APPLIED MECHANICS

MCH 111-4

Course Textbook: "Introduction to Mechanics" - Levinson

Unit #1 - Kinematics of Particles

General Objective:

The student will be able to solve varied problems dealing with the Kinematics of Particles.

Specific Objectives:

1. To be able to define rectilinear or translational motion. 2. To be able to define curvilinear. 3. To be able to define plane motion-4. To be able to define distance. 5. To be able to define displacement (s). 6. To be able to define speed. 7. To be able to define velocity (v). 8. To be able to distinguish between absolute velocity and relative velocity. 9. To be able to define uniform motion. 10. To be able to define acceleration (a) 11. To be able to define uniformly accelerated motion. 12. To be able to state the equation v = u + at13. To be able to state the equation s = ut + at. 0 14. To be able to state the equation v - i + 2as. 15. To be able to define the term normal acceleration. 2 16. To be able to state the equation normal acceleration = -17. Using the slide rule and the above specific objectives the student will solve correctly the following problems in the textbook: Qu. 9-1, 2, 3, 6, 7, 13, 14, 15, 23, 24, 25, 28, 32, 35, 39, 40, 42, 46, 47, 48, 49.

Unit #2 - Kinematics of Rigid Bodies

General Objective:

The student will be able to solve varied problems dealing with the Dinematics of Rigid Bodies.

Specific Objectives:

To be able to differentiate between a particle and a body
To be able to define a machine.
To be able to define a mechanism.
To be able to define rectilinear translation,
To be able to define curvilinear translation.
To be able to define rotation.
To be able to define angular displacement (A).
To be able to define angular distance.

9. To be able to define angular velocity (w). 10. To be able to define angular acceleration (). 11. To be able to state the relationship S = Ar, 12. To be able to state the relationship v = Wr13. To be able to state the relationship a = r2 14. To be able to recall the formula normal acceleration An = r 0 15. To be able to state the formula: normal acceleration An = w r 16. Using the slide rule and the abolve specific objectives, the student will correctly solve the following problems in the textbook: Qu. 10-1, 2, 4, 5, 7, 10, 12, 13, 14, 15, 16, 17, 18, 19, 25, 27, 46, 51, 55. Unit #3 - Kinetics General Objective: The student will be able to solve varied problems dealing with kinetics. Specific Objectives: 1. To be able to state the Second Law of Motion. 2. To be able to define the term sluq. 3. To be able to recall vector addition. 4. To be able to draw free-body diagrams for force systems. 5. To be able to recall that the friction force - the co-efficient of friction x the normal force. 6. To be able to define the term Inertia force. 7. To be able to define the term dynamic equilibrium. 8. To be able to define the term centrifugal force. 9. To be able to define the term centre petal force. 10. To be able to define the term Moment of Inertia. 11. To be able to obtain the Radius of Gyration for rotating bodies. 12. To be able to define the term Inertia Torque. 13. To be able to obtain referred Moments of Inertia. 14. Using the slide rule and the above specific objectives, the student will solve correctly the following problems from the textbook: Qu. 11-2, 3, 4, 11, 12, 13, 14, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 39, 40, 45, 46, 48, 49, 53, 54, 63, 64, 65. Unit #4 - Work, Energy and Power General Objective:

The student will be able to solve varied problems dealing with Work, Energy and Power.

Specific Objectives:

To be able to define the term work.
To be able to identify positive and negative work.
To be able to calculate work from a work diagram.
To be able to define spring stiffness or spring modulus.
To be able to define strain energy of a spring.
To be able to calculate the energy stored in a spring.
To be able to define the work done by Torques and Couple.
To be able to define the terma Potential Energy.
To be able to define the term Kinetic Energy.

- 10. To be able to state the formula for Potential Energy,
- 11. To be able to state the formula for Kinetic Energy.
- 12. To be able to state the formula for Kinetic Energy (linear).
- 13. Using the slide rule and the above specific Objectives the student will solve correctly the following problems from the textbook: Qu. 12-4, 5, 6, 11, 12, 13, 14, 18, 20, 24, 26, 27, 28, 29, 34, 36, 37, 38, 40, 42, 43, 44, 49, 50, 60, 62.

Unit #5 - Impulse and Momentum

General Objective:

The student will be able to solve varied problems dealing with impulse and momentum.

Specific Objectives:

- 1. To be able to state the formula: impulse = P t
- 2. To be able to state the formula: momentum = m v
- 3. To be able to state the formula: angular impulse = T t
- 4. To be able to state the formula: momentum = I w.
- 5. To be able to recall Newton's third law of motion.
- 6. To be able to state the law of conservation of momentum.
- 1. To be able to state the law of conservation of angular momentum.
- 8. To be able to define the co-efficient of restitution.
- 9. Using the slide rule and the above specific objectives the student will solve correctly the following problems from the textbook: Qu. 13-4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 18, 20, 21, 22, 23, 25, 26, 27, 28, 30, 32, 33, 35, 42, 43.